What are the disadvantages of electron beam welding
Electron beam welding generally occurs in a vacuum, and the size of the vacuum chamber can limit the size and amount of parts that can be welded. Further, creating the vacuum in the chamber requires pumping, and depending on the size of the chamber, that can take a long period of time. After the vacuum has been established and the parts welded, the chamber is then brought back to normal pressure, which again adds time to the process. The weld “head” in an electron beam welder is usually fixed, and the parts to be welded have to be maneuvered into position under the beam. Due to the vacuum needed and the physical danger presented by an electron beam – it emits X-rays – an operator cannot be in direct contact with the parts. Hence, parts must be moved remotely, either through manual controls or CNC, during the welding cycle. Depending on the design of the part and the complexity of the welds involved, electron beam welding can range from very expensive to very cost effective. There are no downsides to the quality of an electron beam weld, however.